信息技术的发展让企业管理工具变得更强大,更智能化,让企业用户非常欣喜。然而,广大企业用户也应当明白,越是强大的管理软件就越不好驾驭,在应用的过程中遇到的问题和难点就越多。这些问题,在商业智能软件(>>>点击试用)的应用中得到了体现。商业智能软件对于很多企业用户来说非常陌生,其原因就是因为太过“强大”。
商业智能软件BI的作用是显而易见,但全球的应用率却非常低。在商业智能活动应用最为发达的美 国和欧洲地区,应用效果同样是“喜忧参半”,喜的是许多企业都计划实施商业智能,对商业智能的投资在持续增长;忧的是商业智能仍未被广泛地提升到战略性层面的。商业智能在中国,炒得火热,但应用成功的也寥寥无几。主要是一方面,中国的管理信息化应用层次还不高,对商业智能软件缺乏足够认知和经验;另一方面,商业智能软件对信息化基础要求较高,有很高的准入门槛,否则失败的几率很大。
企业应用商业智能软件需要在现行管理信息系统较为成熟的基础上应用,这样才能起到事半功倍的效果。不建议企业在毫无信息化搭建经验,或者在信息化搭建初期应用商业智能软件。
另外,在应用的过程中需要重点关注数据处理、模型搭建和展现方式三个部分的工作。
1、数据处理。
数据是商业智能软件的主角,基础数据的有效程度直接对系统分析出来的结果有直接影响,这种影响可以达到呈几何级别的错误导向。所以,进行分析的数据处理 工作非常重要。这不仅包括数据清洗、数据分类等基础工作,还包括各系统的数据维度划分和数据表达的一致性。在不同的系统中,信息的传递链条不同,数据间的 逻辑也不同,在系统分析前,将所有异构系统的数据按照一定的模式进行统一的工作是项既琐碎又费神效果也不太明显而且错误率极高的活,换句话说就是个吃力不 讨好的活。但这确实是商业智能软件的最最基础的工作。只有这个地基打好做扎实了,磊起的高楼才坚实。
另外,在数据处理的过程中平衡数据的广度和分析的深度也是一件困难的事情。我们目前基本上对结构化的数据进行处理和分析,但全球产生的数据中85%以上的是非结构化的数据。随着“大数据分析”口号的日渐火热,如何有效的将非结构化的数据转化为有效的结构化数据这本身就是一个难题。企业在做数据挖掘的时候,如果没有本事做到很好处理这些非结构数据的时候,还是别揽那个瓷器活,先分析好结构化数据了先。
2、模型搭建。
有人提出说“商务智能(BI)系统最昂贵的地方不是平台,而是模型”,这个观点我比较赞同。系统最贵的部分一般也是智力最为集中的部分。模型的搭建一般都是BI厂商根据各个行业和系统的运作流程总结出来的优秀的经验,宝贵的实践经验和昂贵的知识产权成正比。然而,目前由于国内市场应用BI的企业并不多,应用深入的更少,应用基础也比较薄弱,即使拿来国外先进的商业模型也不一定运转起来,所以尽快建立各种适合国内企业特色的模型是各商务智能(BI)厂商未来要投入大力解决的。在国内也有很大一部分企业采用的自主开发的方式,采用这种方式可以避免高额的费用,但却无法学习到国外先进的商业经验。
3、展现方式。
这个展现方式指的是系统分析呈现给使用者的感官效果,图表或者仪表盘所展现出来的内容能被使用者接受。当然,你可以说使用者的使用习惯是可以后期改变和影响的。但前提是系统所做出的展现方式的确比较靠谱,比较简洁和清晰才行。我认为一切给不了别人需要了解的数据和信息的都是混淆视听。
这个展现方式与前两项工作相比,难度系数要小很多,但却是景上添花活儿。因为系统所有的内容都通过展现方式传达给用户,直接影响用户对系统的接受度。这就好比你吃一顿饭,色香味俱全一看就很有食欲,同样营养、味道都不错但摆盘粗糙了点,颜色灰暗了点,你在吃这顿饭的时候,立马感觉就不一样了。虽然你还是能把它吃下去,但用户体验大打折扣,非常划不来。所以,在前期很好的调研用户的使用习惯,很好的对数据进行表达,我觉得也是非常重要的工作。
管理软件的应用理论和我们日常生活中很多事物都很相近,都是相同的道理。企业只要明白这个道理并加以利用,那么,应用任何软件都不是问题。
读过这篇文章的人还读过:
4006199527